Francqui chair Professor 2020-2021

Professor Stéphane Goriely

Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles

" About the creation of elements in the Universe"

The inaugural lecture will take place online on Monday, May 3rd, 2021 at 17:00

Programme

17:00 Welcome and introduction by Prof. Piet Van Duppen, Department Chair

17:10 Inaugural lecture by Prof. S. Goriely

Lecture series:

Monday May 10th 2021, 14:00 - 16:00 Monday May 17th 2021, 14:00 - 16:00 Tuesday May 25th 2021, 16:00 - 18:00 Monday May 31st 2021, 14:00 - 16:00

About the creation of elements in the Universe

S. Goriely (IAA-ULB)

	Group IA	1	,	Aton	nic P	rope	ertie	ст) sof	the	Elem	nent	S	Phy Labora physics.ni	sics tory st.gov		Stan Data	dard Ref Progran	ference n VIII 2 's,
1	Hydrogen 1.00794 18 13.5084 3 ² S ₁₉₂	11A	1		Ene For the most l second = 9 be peed of light Planck consta	quently us accurate value 192 631 770 tween the tw in vacuum nt arme	sed fundar s of these and o periods of ra to hyperfine c h	nental phy ther constants idiation corre- levels of the 299 792 4 6.6261 × 1 1.6022 × 1	sical cons visit physics ni sponding to ground state 58 m s ⁻¹ 10 ⁻⁵⁴ J s 10 ⁻¹⁹ C	tants st.gov/constants the transition of ¹³³ Cs (exact) $\langle \tilde{n} = h/2\pi \rangle$			Natio	Techno nal Institute	of Standards	VIB	VIIB 9 ³ Par	Helum 4.00260 1s ³ 24.5874 10 ¹ S ₀
2	Li Liftian 6.941 1 ¹² 21 5.3017 11 ² S ₁₀₂	Beryllum 9.01218 13 23 9.3227 12 ¹ S ₀			electron mass proton mass ine-structure Rydberg cons	constant tant	$m_a c^2$ $m_p c^2$ $R_a c$ $R_a c$	9.1094 × 1 0.5110 M 1.6726 × 1 1/137.036 10.973 73 3.289.84	10 ³¹ kg aV 10 ³² kg 2 m ⁻¹ < 10 ¹⁵ Hz				Boron 10.811 1s ² 2s ² 2s 8.2980 13 ² P ₁₁₂	Cathon 12.0107 13 ¹ 23 ¹ 29 ² 11.2003 14 ⁵ Po	Nitrogen 14.00674 14.5341 14.5341 15 ⁴ S ₃₂₂	Oxygen 15.9204 13.6181 16 ⁵ P ₂	Fluorine 18.99840 18 ¹ 28 ¹ 29 ⁴ 17.4228 17 ² P ₃₂₂	Neon 20.1797 1a ² 2a ² 2p ⁶ 21.9546 18 ¹ So
3	Sodium 22.98977 [Ne[3a 5.1391 19 ² S ₁₀₂	Magnesium 24.3050 [Nic]3a ³ 7.8462 20 ¹ S ₀	IIIA 21 ² D32	IVA	VA	VIA	R_hc k VIIA 25_ ⁵ 8 ₅₂	13.6057 4 1.3807 × 1 26 ⁵ D,	VIIIA	28 ³ F4	1B 29_2s ₁₀	11B 30 's,	Aluminum 26.98154 (Ne(3x ¹ 3p 5.9858 31 ² P ₁₀	Silcon 28.0855 [Ne]3a ² 3p ² 8.1517 32 ³ Po	Phosphorus 30.97376 (Ne)3x ² 3p ³ 10.4967 33 ⁴ S ₃₀ 2	Sufur 32.068 (Ne)3x ² 3p ⁴ 10.3600 34 ³ P ₂	Chlorine 35.4527 [Na]33 ² 3p ⁴ 12.9676 35 ² P ₃₀	Argon 39:948 [Nej3a ² 3p ⁶ 16:7696 36 ¹ Sp
Period	K Potassium 39.0983 [Ar]4a 4.3407 37 ² S	Calcium 40.078 (Ar)4* 6.1132 38 ¹ S.	Scandium 44.95591 Ar 364a ² 6.5615 39 ² D-	Ti Titanium 47.867 Ar[3d ² 4a ² 6.8281 40 ³ E	Vanadium 50.9415 Ar 34 ⁵ 4a ² 6.7462 41 ⁶ D	Cr Chronium 51.9261 [Ar]36 ⁵ 4a 8.7685 42 78.	Manganese 54.33805 [Ar]34 ⁵ 4a ² 7.4340	Fe iron 55.845 [Ar]3d ⁶ 4a ² 7.9024 44 °E	Cobalt 58.93320 Ar[3d ⁷ 4a ² 7.8510	Ni Nickel 58.6034 [Ar]3d ⁹ 4a ² 7.6398 46 ¹ 8	Cu Copper 63:546 (Ar(34 ¹⁰ 4s 7.7264 47 ² 5	Znc 65.39 (Ar)34 ¹⁹ 4a ² 9.3942	Gallum 69.723 [Ar[3d ¹⁹ 4s ² 4p 5.9993 49 ² P	Ge Gemarium 72.81 [Ar]3d ¹⁹ 4a ² 4p ² 7.8994 50 ³ P	Assanic 74.92160 [Ar]3d ⁴⁹ 4a ² 4p ³ 9.7886	Se Selenium 78.96 [Ar]3d ¹⁹ 4a ² 4p ⁴ 9.7524 52 ³ P	Br Biomine 79,904 (Ar)3d ¹⁹ 4s ² 4p ⁵ 11,8138 53 ² P	Kr Krypton 83.80 (Ar)3d ¹⁴ 4s ² 4p ⁴ 13.8996
5	Rubidum 85.4678 Kr 5a 4.1771	Stontum 87.82 [10]51 5.8049	Y Yttrium 88.90585 [Kr]4451 ² 8.2171	Zr Ziroanium 91.224 Kr/44 ² 5s ² 6.6339	Nbbium 92.90638 [10]46 ⁴ 5a 6.7589	Mo Molybdanum 95.94 (Ko)4e ⁵ 5a 7.0024	Technetium (98) (Kr)44 ⁵ 5a ² 7.28	Ru Ruthenium 101.07 [Kr]4e ⁷ 5a 7.3605	Rh Rhodium 102.90550 K0/44 ⁸ 5a 7.4580	Pd Palladium 106.42 Kr/4d ¹⁹ 8.3369	Ag SRvs1 107.8682 Kr 44 ¹⁹ 5s 7.5762	Cd Cadmium 112.411 Kr/4d ¹⁹ 5a ² 8.9038	In Indium 114.818 Ki/4d ¹¹ 5a ² 5p 5.7884	Sn Tin 118.710 Kr/4d ¹⁹ 5a ² 5p ² 7.3439	Sb Antimony 121.760 Kr 4d ⁴⁹ 5a ² 5p ³ 8.6084	Telurium 127.60 Kr/4d ¹⁹ 5a ² 5p ⁴ 9.0095	lodine 126.90447 Kr 4d ¹⁹ 5e ² 5p ⁵ 10.4513	Xenan 131.29 (Kr)4d ¹⁹ 5a ² 5p ¹ 12.1296
6	55 "Sile Ceslum 132:90545 [Xe]5s 3.8039	56 'So Ba Barlum 137.327 [Xe)0a ² 5.2117		72 Fg Hafnium 178.49 [Xe]4(^H 54 ² 64 ³ 6.8251	73 °F32 Tantalum 180.9479 [Xe]41 ⁴⁵ 53 ⁵ 63 ² 7.5496	74 °D ₀ W Tungsten 183.84 (Xs/41 ⁴⁴ 54 ⁴ 6a ² 7.8640	75 °S ₅₂ Re Rhenium 188.207 [Xe]41 ⁴⁵ 54 ⁵ 68 ² 7.8335	76 °D ₄ Osmium 190.23 [Xe]H ⁴⁴ 5d ⁶ 6s ² 8.4382	77 *F ₉₆₂ Ir Ndium 192.217 [Xe]41 ⁴ 54 ⁷ 68 ² 8.9670	78 ⁵ D ₃ Pt Platinum 195.078 (Xe)4 ¹⁴ 54 ³ 6s 8.9587	79 "S ₁₀ Au Gold 196,96555 [Xe]41 ^H 34 ^H 58 9.2255	80 'S, Hg Mercury 200.59 [Xe[41 ^M 5d ¹⁰ 6e ² 10.4375	81 ^P P ₁₀ TI Thallum 204.3833 (Hg)8p 6.1062	82 'Po Pb Lead 207.2 (Ha)0p ² 7,4167	83 *S ₃₄₂ Bi Bismuth 206.99038 [Hg]8p ³ 7.2856	84 'P ₂ Polonium (209) [Hg]8p ⁴ 8,417 ?	85 °P302 At Astatine (210) (Hg)8p ⁵	86 'So Rn Radon (222) Hajkp ⁶ 10,7485
7	87 ² S ₁₀₂ Fr Francium (223) (Re(7s 4.0727	88 ¹ S ₀ Ra Radium (226) (R=[7a ² 5.2764		104 ³ F ₂ Rf Rutherfordium (251) Rnj5 ⁶⁴ 0d ³ 7s ² 6.0 7	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bahrium (254)	108 Hs Hassium (265)	109 Mt Natrerium (258)	110 Ununilum (269)	111 Uuu Urunuium (272)	112 Uub Uhunblum	Solids Liquids Gases Artificially Prepared Discussion Control of the atomic physics.nis		descrip tomic da cs.nist.gov	tion of ita, visit //atomic		
A N Symbol Name	tomic Gr umber 58 Cer	¹ G ₄ e ium		57 ² D ₃₀ La Lathanum 138.9065 (Xa)5d8a ² 5.5769	58 ¹ G ₄ Cetum 140.116 [Xii]4535a ¹ 5.5387	59 ⁴ 1 ₈₂ Praseodymium 140.50765 [Xe]4 ² 51 ² 5.473	60 ⁵ L ₄ Nodymium 144.24 [Xa]41 ⁴ 5a ² 5.5250	61 ⁵ H ₁₀₂ Promotium (145) (Xa)41 ⁶ 5x ² 5.582	62 ^T F ₀ Samarlum 150.38 [Xe]4 ⁶ 5e ² 5.8438	63 ¹ S ₁₀ Eu 151.964 [Xa[4] ² 5a ³ 5.8704	64 °D ₂ Gd Badolinium 157.25 Xa 41 ⁷ 5454 ³ 8.1501	65 ⁶ H ₁₀₇ Tb Terbium 158.02534 [Xe]4 ⁶ 6a ² 5.8638	66 ⁵ L _a Dysprosium 102.50 [Xa]41 ⁴⁹ 5a ² 5.9389	67 ⁴ L _{15/2} Ho Holmium 164.93052 [Xa]41 ⁴¹ 5x ² 8.0216	68 ³ H ₆ Ertium 167.28 [Xs]41 ¹⁰ 5s ² 6.1077	69 ² F ₁₀ Tm 168.93421 [Xa]4 ¹⁹ 52 ² 6.1843	70 ¹ S ₀ Yb Yfterbium 173.04 Xa 41 ⁴⁸ s ² 6.2542	71 ² D _{atz} Lu Lutetium 174.957 [Xa]41 ⁴⁵ 345a ² 5.4259
Atomic Weight Grou	140 [Xe]4 5.5 guration	Inization Inization Energy (aV)		89 °D ₃₀ Ac Actinium (227) [Ra)6dTs ² 5.17	90 °F2 Th Thatum 232.0381 [Rn)6d ² 7s ² 8.3067	91 *King Pa Protactinium 231.03588 (Rn(51 ² 647a ² 5.89	92 °L ₈ Utanium 238.0289 Porjst ² 847s ² 8.1941	93 Litte Np Neptunium (237) Perj5/*647a ² 6.2057	94 F ₀ Putonium (244) [Re[5f ² 7s ² 6.0262	95 'S ₁₀ Amaricum (243) Ph(5 ¹⁷ 7s ² 5.9738	96 Dy Cm Curlum (247) [Rn[51 ⁷ 647s ² 5.9915	97 "H _{tito} Bk Batvalium (247) (Rajsf ² 7a ² 8.1979	98 '1, Cf Caltonium (251) (Pbr(51 ⁴⁹ 7s ² 6.2817	99 "L ₁₅₀ Es Einsteinium (252) (Por(51 ⁴⁷ 7s ²) 6.42	Farmium (253) (Regist ¹² 7s ² 6.50	Mendelevium (258) (Rer(s) ¹⁵ 7s ² 6.58	102 S ₀ Nobelum (259) (Rr(51 ⁴⁷ 7s ²) 6.65	Lawrendium (262) (Rn)5 ⁶⁴ 7s ² 7p ³ 4.9 7

Origin of the elements in the Universe ?

~ 83 naturally occuring elements on Earth

Chart of Nuclides

N (number of neutrons)

Isotopic composition of the Solar System

based essentially on the analysis of meteorites, solar spectroscopy, and the earth isotopic composition

Prime fingerprint of astrophysical nuclear processes Clear correlation between the Solar System abundances and nuclear properties Some important dates in the history of nucleosynthesis

1938: Gamow, von Weizsacker et Bethe identify the energy source in stars:

Gamow

Von Weizsacker

Bethe

Net result: $4p \rightarrow {}^{4}He + 2e^{+} + 2\nu + Q_{eff}$

1946: Hoyle predicts most of the elements and their isotopes are made by stars

Hoyle

1952: P.W. Merill discovers Tc at the surface of stars

→ rich and present nucleosynthesis in stars

P.W. Merill

 $T_{1/2}(Tc) < 4Myr$

1951-1952: Identification of the 3α reaction to cross the *A*=8 gap thanks to the theoretical predictions and experimental confirmation of the 0⁺ resonance state at 7.7 MeV in ¹²C

• Nucleosynthesis beyond He: $3\alpha \rightarrow {}^{12}C$

1954-1957: Nucleosynthesis theories are forged 1946, 1954: Hoyle & 1957: B²FH, Cameron

REVIEWS OF MODERN PHYSICS

Volume 29, Number 4

October, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

1964: Cosmic micro-wave background at 2.7K is accidently discovered by A. Penzias and R. Wilson

Primordial nucleosynthesis (Big Bang)

Penzias & Wilson

1970s: Nuclear Astrophysics as a "real" multi-disciplinary field with a European leadership

M. Arnould (ULB) & W. Hillebrandt (MPA) & K. Takahashi (GSI)

1982: Discovery of the γ-ray emitted during the decay of ²⁶Mg produced by ²⁶Al β-decay ($T_{1/2}$ =7.4 10⁵y)

 \rightarrow development of a new astronomy: the γ -astronomy

1.8 MeV γ -ray line observed in the Galactic plane

Compton γ-ray observatory

1987: Explosion of SN1987A in the LMC: non-solar neutrinos detected

neutrino astronomy & link to explosive nucleosynthesis

2017: first direct detection of gravitational waves from a binary NS-NS system merger and its electromagnetic counterpart (kilonova)

Multi-messenger Astronomy
breakthrough for the rapid neutron-capture process (or r-process) nucleosynthesis

Laser Interferometer Gravitational-Wave Observatory

Origin of the elements in the Universe

- Primordial (Big-Bang) nucleosynthesis: H, He, and some Li
- Cosmic rays: Li-Be-B at the stellar surface or in the ISM
- Stars: stars evolve and transform light H-He elements into heavier species

Primordial nucleosynthesis

WMAP $\eta = 6.10 \pm 0.04 \ 10^{-10}$

One of the major pillars of the Big Bang theory: Reproduce observed primordial abundances of H, He, Li over 9 orders of magnitude

(Li underestimated by a factor of \sim 3)

Abundances resulting from the BB

Abundances in SoS today

Chemical evolution of the Galaxy

Primordial nucleosynthesis

The Li-Be-B nucleosynthesis

Non-thermal nucleosynthesis by spallation reactions C-N-O elements accelerated at high energies in GCR and bombarding H from the interstellar medium

Li – Be – B production

Could spallation reactions contribute to the production of other elements ??

Nucleosynthesis of elements lighter than Fe

Stars: gravitationnally controlled nuclear reactors

The evolution and nucleosynthesis of massive stars ($M \ge 10 M_{\odot}$)

Supernova explosions of massive stars enrich the interstellar medium in heavy elements up to the Fe group

Overproduction factors of isotopes from H to Fe in a 25 M_{\odot} star

Origin of the 52 elements heavier than Fe

Nucleosynthesis of the elements heavier than iron

N (number of neutrons)

The slow neutron-capture process (or s-process)

The s-process is responsible for about half of the elements heavier than iron in the Universe

The s-process nucleosynthesis is responsible for half of the elements heavier than iron in the Universe

- How are the neutrons produced in AGB stars ?
- What is the role of the various mixing mechanisms ?
- What is the contributions from intermediate-*M* AGB stars ?
- How to explain specific observations ?
- (n,γ) and *T*-dependent β -decay rates of unstable nuclei ?

Van Winckel (2003, AARA)

The rapid neutron-capture process (or r-process)

The r-process is responsible for the other half of the elements heavier than iron in the Universe

Our understanding of the r-process nucleosynthesis, *i.e.* the origin of about half of the elements heavier than Fe in the Universe, has been considered as one of the 11 top fundamental questions in Physics and Astronomy

("Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century": 2003, National research council of the national academies, USA)

Some clear signatures

- Rapid neutron-capture process: $N_n \sim 10^{24-34} \text{ cm}^{-3}$
- Explosive environment: $\tau \sim 1$ s, $T \sim 10^9$ K
- Early enrichment of the Galaxy

Still many open questions:

- Astrophysical Site ? Where ? When ? How ?
- Associated Nuclear Physics (no exp)?
- Chemical Evolution of the Galaxy ?

R-process site favoured for a long time: Supernova explosion of massive stars

Explosive environment – enrichment of the interstellar medium

But up to now ... without success ...

An alternative scenario: the decompression of neutron star matter

An alternative scenario: binary neutron star mergers

5.04 ms

multi-messenger observations

First observation of a "Kilonova"

Light curve ($\sim t^{-1.3}$) compatible with the one from the coalescence of 2 NSs caused by the radioactive decay of heavy elements

Observations confirm

- Ejecta rich in heavy elements (A>140)
- Presence of Sr (produced by the rprocess)

The ejected mass and the merger rate derived from GW170817 suggested that neutron star mergers could dominate the *r*-element production in the Universe

What about an intermediate neutron-capture process ?

The p-process nucleosynthesis

The p-process nucleosynthesis is responsible for n-deficient elements heavier than iron in the Universe

- What is the contribution of SN Ia or p-rich v-wind, if any ?
- What are the seed nuclei feeding the p-process ?
- How to explain the origin of ^{92,94}Mo, ⁹⁶Ru, ¹³⁸La?
- What is the role of neutrinos for rare species ?
- What is the photodissociation rates of nuclei involved ?

The various nucleosynthesis processes

Many different nuclear needs for the various nucleosynthesis processes

Nuclear Physics is a necessary condition for Nucleosynthesis

Nuclear physics is a necessary but not a sufficient condition for Nucleosynthesis

SUM	MARY	ASTRO	NUCLEAR	OBS	
	BIG-BANG	+	+	+	LECTURE 1
	Li-Be-B	+	+	+	LECTURE 1
	SYNTHESIS < FE	+	+	+	LECTURE 1
	SPALLATION (?)				LECTURE 1
	S-PROCESS	-/+	+/-	+/-	LECTURE 2
	I-PROCESS	-/+	+/-	+/-	LECTURE 2
	R-PROCESS	-/+		- /+	LECTURE 3-4
	P-PROCESS	-/+	-	-	LECTURE 4

Still many observations remain unexplained, astrophysical sites unexplored, nuclear reactions undetermined.

THANK YOU FOR YOUR ATTENTION